Publications

As with any research and development effort, the DADSS Research Program has published findings throughout the process. In the links below, you can access these articles and research papers, published from 2009 through the present.

Divider


Passive In-Vehicle Driver Breath Alcohol Detection Using Advanced Sensor Signal Acquisition and Fusion

Traffic Injury Prevention
Publication Year: 2017

Objective: The research objective of the present investigation is to demonstrate the present status of passive in-vehicle driver breath alcohol detection and highlight the necessary conditions for large-scale implementation of such a system. Completely passive detection has remained a challenge mainly because of the requirements on signal resolution combined with the constraints of vehicle integration. The work is part of the Driver Alcohol Detection System for Safety (DADSS) program aiming at massive deployment of alcohol sensing systems that could potentially save thousands of American lives annually.

Method: The work reported here builds on earlier investigations, in which it has been shown that detection of alcohol vapor in the proximity of a human subject may be traced to that subject by means of simultaneous recording of carbon dioxide (CO2) at the same location. Sensors based on infrared spectroscopy were developed to detect and quantify low concentrations of alcohol and CO2. In the present investigation, alcohol and CO2 were recorded at various locations in a vehicle cabin while human subjects were performing normal in-step procedures and driving preparations. A video camera directed to the driver position was recording images of the driver’s upper body parts, including the face, and the images were analyzed with respect to features of significance to the breathing behavior and breath detection, such as mouth opening and head direction.

Results: Improvement of the sensor system with respect to signal resolution including algorithm and software development, and fusion of the sensor and camera signals was successfully implemented and tested before starting the human study. In addition, experimental tests and simulations were performed with the purpose of connecting human subject data with repeatable experimental conditions. The results include occurrence statistics of detected breaths by signal peaks of CO2 and alcohol. From the statistical data, the accuracy of breath alcohol estimation and timing related to initial driver routines (door opening, taking a seat, door closure, buckling up, etc.) can be estimated.

The investigation confirmed the feasibility of passive driver breath alcohol detection using our present system. Trade-offs between timing and sensor signal resolution requirements will become critical. Further improvement of sensor resolution and system ruggedness is required before the results can be industrialized.

Conclusions: It is concluded that a further important step toward completely passive detection of driver breath alcohol has been taken. If required, the sniffer function with alcohol detection capability can be combined with a subsequent highly accurate breath test to confirm the driver’s legal status using the same sensor device. The study is relevant to crash avoidance, in particular driver monitoring systems and driver–vehicle interface design.

Experimental Proof-of-Principle of In-Vehicle Passive Breath Alcohol Estimation

International Conference on Alcohol, Drugs and Traffic Safety, ICADTS 2016
Publication Year: 2016

The reported work is highly related to the DADSS (driver alcohol detection system for safety, [3]) program, and other related initiatives aiming at the prevention of drunk driving. The possibility of breath alcohol estimation in highly diluted breath samples in a vehicle cabin by using carbon dioxide as a tracer gas to compensate for the dilution has been demonstrated and evaluated elsewhere [4-12]. The infrared sensor technology developed by SenseAir AB, Sweden, is enabling unprecedented sensor performance [9]. However, passive breath alcohol detection requiring no cooperation from the driver has remained a major technological challenge. The aim of the present investigation is to obtain experimental proof-ofprinciple of completely passive, in-vehicle estimation of breath alcohol concentration. A prototype sensor system has been integrated with the casing of the upper steering column within a vehicle. Human subjects, some of them intoxicated by alcohol, are instructed to enter the vehicle and perform a simulated driving task while breathing normally. Sensor signals corresponding to alcohol and CO2 concentration at the sensor position are recorded and analyzed off-line. The sensor CO2 signal pattern includes peaks corresponding to increasing CO2 concentration in expired air reaching the sensor position after leaving the subject’s mouth or nose. These peaks will coincide with peaks in the alcohol signal from an intoxicated subject. From the peak magnitudes an algorithm for breath alcohol estimation has been devised. The results indicate that peaks from normal breathing are readily detectable and quantifiable by the sensors, although the dilution factor DF (ratio between expired and actual concentration measured by the sensor) may be as high as several hundred at the steering column sensor position.

Development and Evaluation of Algorithms for Breath Alcohol Screening

Sensors
Publication Year: 2016

Breath alcohol screening is important for traffic safety, access control and other areas of health promotion. A family of sensor devices useful for these purposes is being developed and evaluated. This paper is focusing on algorithms for the determination of breath alcohol concentration in diluted breath samples using carbon dioxide to compensate for the dilution. The examined algorithms make use of signal averaging, weighting and personalization to reduce estimation errors. Evaluation has been performed by using data from a previously conducted human study. It is concluded that these features in combination will significantly reduce the random error compared to the signal averaging algorithm taken alone.

Driver Alcohol Detection System for Safety (DADSS) – A Status Update

Proceedings of the 24th International Technical Conference on the Enhance Safety of Vehicles.
Paper Number 15–0276
Publication Year: 2015

The National Highway Traffic Safety Administration (NHTSA) and the Automotive Coalition for Traffic Safety (ACTS) began research in February 2008 to try to find potential in-vehicle approaches to the problem of alcohol-impaired driving. Members of ACTS comprise motor vehicle manufacturers representing approximately 99 percent of light vehicle sales in the U.S. This cooperative research partnership, known as the Driver Alcohol Detection System for Safety (DADSS) Program, is exploring the feasibility, the potential benefits of, and the public policy challenges associated with a more widespread use of non-invasive technology to prevent alcohol-impaired driving. The 2008 cooperative agreement between NHTSA and ACTS for Phases I and II outlined a program of research to assess the state of detection technologies that are capable of measuring blood alcohol concentration (BAC) or Breath Alcohol Concentration (BrAC) and to support the creation and testing of prototypes and subsequent hardware that could be installed in vehicles. This paper will outline the technological approaches and program status.

Introduction of a Solid State, Non-Invasive Human Touch Based Alcohol Sensor

Proceedings of the 24th International Technical Conference on the Enhance Safety of Vehicles.
Paper Number 15–0380
Publication Year: 2015

This paper presents an overview of the theory and implementation of a touch-based optical sensor for monitoring the alcohol concentration in the driver of a vehicle. This novel sensor is intended to improve driver safety by providing a non-intrusive means of notifying a driver when their blood alcohol concentration may be too high to operate a vehicle safely. The optical alcohol detection system has successfully completed several stages of development and validation. A commercially available, industrial version of the system (Mark 1) has undergone extensive clinical testing and field validation. Under the DADSS (Driver Alcohol Detection System for Safety) Program, a compact semiconductor version (Mark 2) of the optical system has been developed targeting use in consumer vehicles. Based on proven semiconductor laser technologies, the Mark 2 sensor system has demonstrated excellent spectral accuracy and precision and is currently undergoing laboratory validation testing. A demonstration vehicle version of the system has been designed and will be implemented following completion of the laboratory validation testing.