As with any research and development effort, the DADSS Research Program has published findings throughout the process. In the links below, you can access these articles and research papers, published from 2009 through the present.


Improved Breath Alcohol Analysis with Use of Carbon Dioxide as the Tracer Gas

Mälardalen University Press Dissertations
Publication Year: 2010

State-of-the-art breath analysers require a prolonged expiration into a mouthpiece to obtain the accuracy required for evidential testing and screening of the alcohol concentration. This requirement is unsuitable for breath analysers used as alcolock owing to their frequent use and the fact that the majority of users are sober drivers; as well as for breath testing in uncooperative persons.

This thesis presents a method by which breath alcohol analysis can be improved, using carbon dioxide (CO2) as the tracer gas, offering quality control of the breath sample, enabling the mouthpiece to be eliminated, and bringing about a significant reduction in the time and effort required for a breath alcohol screening test. With simultaneous measurement of the ethanol and the CO2 concentrations in the expired breath, the end-expiratory breath alcohol concentration (BrAC) can be estimated from an early measurement, without risk of underestimation.

Comparison of CO2 and water as possible tracer gases has shown that the larger intra- and interindividual variations in the (end-expiratory) concentration is a drawback for CO2 whereas the advantages are a low risk of underestimation of the BrAC, and the limited influence from ambient conditions on the measured CO2 concentration. The latter is considered to be of importance because the applications likely imply that the breath tests will be conducted in an uncontrolled environment, e.g., in a vehicle or ambulance. In emergency care, the measurement of the expired CO2 concentration also provides the physicians with information about the patient’s respiratory function.

My hope and belief, is that with a more simple, reliable and, user-friendly test procedure, enabled with the simultaneous measurement of the CO2 in the breath sample, the screening for breath alcohol will increase. An increased number of breath alcohol analysers installed as alcolocks and more breath alcohol tests conducted in emergency care, is likely to save lives and diminish the number and severity of injuries.

Driver Alcohol Detection System for Safety (DADSS) – A Non-Regulatory Approach in the Development and Deployment of Vehicle Safety Technology to Reduce Alcohol-Impaired Driving

Proceedings of the 21st International Technical Conference on the Enhance Safety of Vehicles.
Paper Number 09–0464
Publication Year: 2009

While government regulations play an important role in ensuring vehicle safety, voluntary approaches to the design and implementation of vehicle safety systems are increasing in importance as vehicle manufacturers deploy safety systems well in advance of, and even in the absence of, government regulations requiring them. This paper provides an overview of regulatory and non-regulatory approaches to vehicle technology development and deployment, and will describe a new, innovative public\private partnership underway to develop an in-vehicle alcohol detection system. In response to concerns about limited progress in reducing alcohol-impaired driving in the United States during the last decade, attention is focusing on technological approaches to the problem. One strategy includes efforts to increase the application of current breath alcohol ignition interlocks on the vehicles of Driving While Intoxicated (DWI) offenders. However, in recognition that many alcohol-impaired drivers have not been convicted of DWI, an effort is underway to develop advanced invehicle technologies that could be fitted in vehicles of all drivers to measure driver blood alcohol concentration non-invasively. The Automotive Coalition for Traffic Safety (ACTS, a group funded by vehicle manufacturers) and the National Highway Traffic Safety Administration (NHTSA) have commenced a 5- year cooperative agreement entitled Driver Alcohol Detection System for Safety (DADSS) to explore the feasibility of, and the public policy challenges associated with, widespread use of invehicle alcohol detection technology to prevent alcohol-impaired driving. This paper will outline the approach being taken, and the significant challenges to overcome.

Comparison of spectroscopically measured tissue alcohol concentration to blood and breath alcohol measurements

Journal of Biomedical Optics
Publication Year: 2009

Alcohol testing is an expanding area of interest due to the impacts of alcohol abuse that extend well beyond drunk driving. However, existing approaches such as blood and urine assays are hampered in some testing environments by biohazard risks. A noninvasive, in vivo spectroscopic technique offers a promising alternative, as no body fluids are required. The purpose of this work is to report the results of a 36-subject clinical study designed to characterize tissue alcohol measured using near-infrared spectroscopy relative to venous blood, capillary blood, and breath alcohol. Comparison of blood and breath alcohol concentrations demonstrated significant differences in alcohol concentration [root mean square of 9.0 to 13.5 mg∕dL] that were attributable to both assay accuracy and precision as well as alcohol pharmacokinetics. A first-order kinetic model was used to estimate the contribution of alcohol pharmacokinetics to the differences in concentration observed between the blood, breath, and tissue assays. All pair-wise combinations of alcohol assays were investigated, and the fraction of the alcohol concentration variance explained by pharmacokinetics ranged from 41.0% to 83.5%. Accounting for pharmacokinetic concentration differences, the accuracy and precision of the spectroscopic tissue assay were found to be comparable to those of the blood and breath assays.